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Abstract. The consequences of a recently introduced irreducible pionic effect in low-energy nucleon-
deuteron scattering are analyzed. Differential cross-sections, nucleon (vector) and deuteron (vector and
tensor) analyzing powers, and four different polarization transfer coefficients are considered. This 3NF -
like effect is generated by the pion exchange diagram in presence of a two-nucleon correlation and is
partially cancelled by meson retardation contributions. Indications are provided that such type of effects
are capable to selectively increase the vector (nucleon and deuteron) analyzing powers, while in the consid-
ered energy range they are almost negligible on the differential cross-sections. These indications, observed
with different realistic nucleon-nucleon interactions, provide additional evidences that such 3NF -like effects
have indeed the potential for solving the puzzle of the vector analyzing powers. Smaller but non-negligible
effects are observed for the other spin observables. In some cases, we find that the modifications introduced
by such pionic effects on these spin observables (other than the vector analyzing powers) are significant
and interesting and could be observed by experiments.

PACS. 24.70.+s Polarization phenomena in reactions – 21.30.Cb Nuclear forces in vacuum – 25.10.+s
Nuclear reactions involving few-nucleon systems – 25.40.Dn Elastic neutron scattering

1 Introduction

As is well known, nuclear potentials (two-, three-,
and many-body) are generated when the relevant non-
nucleonic degrees of freedom (isobars and the force-
mediating mesons) are eliminated from the field-theoretic
Fock space with the aim to treat nuclear dynamics within
the restricted, purely nucleonic, Hilbert space.

One could view this fact also in the following way: in-
stead of solving the full nuclear problem in one single step
in terms of all its effective constituents (e.g., nucleons,
isobars, and mesons), one separates for convenience the
problem into two steps. First, a model solution of the field-
theoretic problem is sought in the enlarged space where
there is, in every intermediate state, at least a meson (or
an isobar). This produces a set of subamplitudes which
can be identified as nuclear potentials. Then, as result of
this first step, the nuclear forces can be used as input for
the calculation of the subsequent task, represented by the
non-relativistic quantum-mechanical solution of the nu-
clear dynamics within the purely nucleonic Hilbert space.
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Obviously, the first step can only be determined in
some approximate way, since the problem represents, in
terms of its effective field-theoretic constituents, an ex-
tremely complicated task. Thus, it has been inevitable
that a variety of strategies for determining the nuclear
potentials in different model spaces have been developed.
For two-nucleon potentials, many indeterminations im-
plicit in all approaches can be constrained up to a high
level of accuracy by comparison with the phenomenologi-
cal NN phase shifts, but the situation is much less devel-
oped for three-nucleon potentials. (And still in its infancy
for contributions involving more than three nucleons, al-
though general dimensional arguments based on power-
counting schemes predict that the many-nucleon contribu-
tions rapidly decrease toward zero with increasing number
of nucleons.)

Considerations about three-nucleon potentials ap-
peared soon to be strongly dependent on the theoretical
strategies employed to reduce the enlarged space involv-
ing mesons and baryons into the more tractable purely
fermionic/nucleonic space. A paradigmatic example is dis-
cussed in an article (ref. [1]) with this remarkable title: The
three-nucleon force is not made by nature. A more tech-
nical review can be found in ref. [2]. These two articles
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focus attention in particular on the dynamical aspects of
the ∆ isobar. On the other hand, there are ambiguities in
the definition of a three-nucleon force (3NF ) connected,
e.g., with the treatment of mesonic-retardation effects, al-
though there are consistency conditions that relate the
different definitions to each other. As observed in ref. [3],
these ambiguities arise because the (three-nucleon) poten-
tial is an unphysical theoretical object, obtained from a
subamplitude according to a set of prescriptions.

The first non-nucleonic ingredient that plays a crucial
role for nuclear systems is the pion, and it is natural to
aim at a theoretical formulation that couples dynamically
this meson to the nucleonic degrees of freedom. Such a
formulation would then provide a combined description
of nuclear systems at low and intermediate energies. Pi-
ons are produced indeed and observed by experiments at
intermediate energies and their dynamical role in these
nuclear systems can hardly be ignored.

With two-nucleon systems, various approaches to in-
clude the effects of a dynamical pion in a non-perturbative
fashion have been developed and analyzed [4], and many
theoretical problems like relativistic aspects, or the proper
treatment of the nucleon renormalization effects, or finally
the consistent treatment of meson exchange diagrams re-
lated by different time orderings, have been extensively
discussed [5]. Not all these problems have been solved in
a systematic manner since these πNN approaches aim to
include just one dynamical pion in the theory, thus ruling
out more complex situations with multipionic intermedi-
ate states. Stated in other words, these techniques allow
to include one single dynamical pion in the 2N system,
but then one has to face the conceptual problems arising
because the states with more than one pion at the same
time are ruled out from the dynamical equations. Still, in
spite of these problems, the generalization of such type of
approaches to the three-nucleon system allows to reveal
possible new dynamical aspects of the pion that cannot
be observed by freezing out from the very beginning all
mesonic degrees of freedom, into instantaneous meson ex-
change potentials.

The dynamical equations for the coupled NN -πNN
problem have been generalized to the 3N system in
ref. [6]. The method is based on the rigorous Yakubovski-
Grassberger-Sandhas [7,8] four-body theory, extended to
the πNNN system with an absorbable pion. Previously,
this problem has been analyzed with few-body techniques
for quite a few years [9–11]. The solution of the resulting
set of 21×21 coupled equations represents a formidable
task, and for practical reasons an approximation scheme
to reduce the complexity of the original equations to an
approximated but more tractable form has been devel-
oped [12]. The approximation scheme builds up the com-
plete dynamical solution starting from the zeroth-order
solution, given by the standard quantum-mechanical Alt-
Grassberger-Sandhas (AGS) equation [13]. The theoreti-
cal strategy that emerges from this approximation scheme
consists in treating the normal 2N correlations “exactly”
via Faddeev-like methods, while the additional mesonic
aspects which cannot be adequately described by a con-
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Fig. 1. 3NF -type diagrams appearing at the lowest order from
the treatment of the coupled π-NNN system.

ventional 2N potential have to be incorporated directly
into the dynamical equation as corrections (i.e. through an
underlying perturbative-iterative expansion). This is con-
sistent with the findings of the approaches based on chiral
perturbation theory (ChPT) which predict that 3NF ef-
fects are small [14].

To the lowest order, the approximation scheme ends
up with three different types of irreducible 3NF diagrams
which have to be incorporated in the dynamical equations
according to the prescriptions given in ref. [12]. These di-
agrams are shown in fig. 1. Clearly, all three types of di-
agrams are related to specific aspects of the pion dynam-
ics which cannot be incorporated in the description of a
purely nucleonic system interacting through a pair-wise
potential.

Amongst the three types of diagrams, one can eas-
ily recognize the extensively studied 2π-3NF diagram,
labeled a) in the figure. This diagram has led to var-
ious models of 3N potential amongst which we recall
two historical representations, Tucson-Melbourne [15] and
Brazil [16]. These potentials use the πNN vertices and
the off-shell extrapolated πN amplitudes as inputs. It is
important to observe that in the construction of these po-
tentials certain diagrams have to be subtracted explicitly,
to avoid double countings. The other two types of dia-
grams that emerge at the lowest order involve the inter-
mediate formation of a 2N correlation while one pion is
being exchanged, and finally the intermediate formation
of a 3N correlation, during the exchange process (dia-
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grams b) and c), respectively, in fig. 1). The last type of
diagram involves the connected part of the 3N → 3N am-
plitude, denoted U00 in the figure, and has been discussed
in the previous literature only occasionally [17], and to our
knowledge, its effect has not yet been estimated quantita-
tively in realistic situations, although its relevance might
not be so important because the probability that a full 3N
correlation is formed during the meson exchange process
is expected to be small.

The diagram 1b), involving the full 2N t matrix during
a pion exchange process, has been discussed in ref. [18].
The consequent appearance of an irreducible 3N operator
with tensor-like structure has also been observed therein
(see also refs. [19,20]). In the construction of this opera-
tor, certain classes of subdiagrams have to be subtracted,
because of the presence of a cancellation effect which has
been observed in the literature quite a few years ago [21,
22]. The connection between the nature of these cancel-
lations and their implications to the ChPT approach has
been discussed in ref. [3]. A similar cancellation effect has
been also observed —in leading order— in effective nu-
clear forces based on chiral Lagrangians and constructed
with the method of unitary transformation [23]. As has
been discussed in refs. [18–20], however, such subtrac-
tion leads to a cancellation effect which is only partial
if the original 3NF diagram has been derived within a
dynamical approach which leads to an energy-dependent
3NF -like operator, and where the meson propagates for
a sufficiently extended time to allow the intermediate for-
mation of a correlated 2N pair. That might correspond
to the inclusion of a series of non-vanishing higher-order
terms in the chiral expansion. In the standard approach
which uses instantaneous two- and three-nucleon interac-
tions, the freezing out of the mesonic degrees of freedom
does not contemplate the occurrence of such a 3NF effect.

In ref. [19], the consequences of considering this type
of one-pion exchange 3NF diagram (OPE-3NF ) in the
3N equation have been studied. It was shown that this
diagram has the potential to modify considerably the vec-
tor analyzing powers Ay without affecting appreciably
the differential cross-section, and could therefore solve
the long standing puzzle of the vector analyzing pow-
ers in nucleon-deuteron scattering below 30 MeV. On the
other hand, other alternative explanations have been sug-
gested in the literature. Effective three-nucleon potentials
constructed with a combination of short-range and pion-
range terms have been considered first under the point of
view of the meson exchange picture [24], and later recon-
sidered under the framework of chiral perturbation the-
ory [25], since a non-negligible role for these terms is pre-
dicted. A phenomenological spin-orbit three-body opera-
tor has also been introduced [26] in order to improve the
vector analyzing powers. Another explanation [27] advo-
cates the Brown-Rho scaling-with-density hypothesis [28]
in the three-nucleon system. Because of this scaling, the
2N potential has been modified specifically in the triplet
P waves by reducing the scalar- and vector-meson masses
to approximately 95% of their free-space value, thereby
enhancing the spin-orbit term of the density-dependent

2N potential with respect to free space. This selective de-
pendence of the Ay puzzle on the triplet P waves of the
2N force suggested also that modern phase-shift analysis
might have not yet been settled to the correct parameters
for these states in the low-energy domain [29]. But it has
also been argued [30] that the required changes of the free-
space 2N potential have to be exceedingly drastic for the
one-pion exchange contribution, which on the contrary is
well established.

In the present paper, we have extended the study of
ref. [19] about the irreducible pionic effect implied by the
OPE-3NF diagram by considering such an effect with
three different 2N potentials. In all cases we were able
to demonstrate that this irreducible pionic effect has the
potential to solve the puzzle for the low-energy vector an-
alyzing powers with negligible effects for the differential
cross-sections and minor effects for the other spin observ-
ables. We have also widened the comparison with experi-
mental data by including differential cross-sections, vector
and tensor analyzing powers, and spin transfer coefficients
at various energies below 20 MeV.

The basic structure of the OPE-3NF diagram is re-
called in sect. 2. Comparison between theory and experi-
ments is made in sect. 3. Conclusions are derived in sect. 4.

2 Theory

Following refs. [6,12,18,19], we have incorporated directly
into the Faddeev-AGS three-nucleon equation the irre-
ducible effects generated by the one-pion exchange mech-
anism in the presence of a nucleon-nucleon correlation.
The detailed expression has been discussed previously in
ref. [18]. It is reported here for convenience:

V 3N
3 (p,q,p′,q′;E) =

f2
πNN (Q)

m2
π

1
(2π)3

×
[
(σ1 ·Q)(σ3 ·Q)(τ1 ·τ3) + (σ2 ·Q)(σ3 ·Q)(τ2 ·τ3)

ω2
π

]

× t̃12(p,p′;E − q2

2ν − mπ)
2mπ

+
f2

πNN (Q)
m2

π

1
(2π)3

t̃12(p,p′;E − q′2

2ν − mπ)
2mπ

×
[
(σ1 ·Q)(σ3 ·Q)(τ1 ·τ3) + (σ2 ·Q)(σ3 ·Q)(τ2 ·τ3)

ω2
π

]
. (1)

The momenta p,q represent respectively the Jacobi
coordinates of the pair “12”, and spectator “3”, while E
is the 3N energy. The pion-nucleon coupling constant is
selected by the underlying 2N potential that is considered;
for instance, for the Paris and Bonn potentials, we have
used the “traditional” value f2

πNN/(4π) = 0.078, while for
the newer CD Bonn potential [31] we have consistently
used the more recent determinations by the Nijmegen [32]
and VPI [33] group. The same considerations have been
applied for the pion-nucleon form factor, since we have
employed the same standard functions (and also with the



228 The European Physical Journal A

same parameters) that have been employed at the level of
the 2N potentials

fπNN (Q) = fπNN
Λ2

π − m2
π

Λ2
π + Q2

. (2)

The transferred momentum Q = q′−q enters also in ωπ =√
m2

π + Q2. t̃ij denotes the subtracted t matrix between
nucleons 1 and 2, defined according to the prescription

t̃12(p,p′;Z) = c(E) t12(p,p′;Z) − v12(p,p′) . (3)

We have considered in addition another possible type
of subtraction

t̃12(p,p′;Z) = c(E) t12(p,p′;Z) − t12(p,p′;−Λ̃) , (4)

where the subtraction parameter Λ̃ has been fixed around
1.5 GeV. Other details can be found in refs.[18,19]. The
factor c(Z) is an adjustable parameter and serves to
control the cancellation between the two terms. Ideally,
this factor should be approximately one if the 2N t
matrix could be reliably extrapolated off-shell down to
Z � −160 MeV. However, the existing 2N potentials can-
not guarantee the extrapolation at such negative energies.
Moreover, additional approximations and simplifications
entered in the determination of the expression for V 3N

3 ,
as discussed in ref. [18,19]. For these reasons, we intro-
duced c(Z) as adjustable parameter, with the constrain
that at higher energies in nd scattering, this factor should
move towards one, because the 2N t matrix entering in
V 3N

3 is then calculated at energies higher than � −160
MeV, that is, less far off-shell. The use of the second type
of subtraction, eq. (4), has been introduced in the case
of the Paris potential because this potential is not OBE
like (one-boson exchange). In this case, the subtraction of
the meson-exchange diagrams involved in the cancellation
is therefore not feasible with eq. (3). On the other hand,
eq. (4) tends to enhance the cancellation effects with re-
spect to eq. (3), and therefore it is to be expected that
the parameter governing the cancellation in eq. (4) has to
compensate this effect.

The irreducible pionic effect described by eq. (1) can
be incorporated in the scattering equation in a convenient
way if the 2N input potential is of finite rank. For a rank-
one (separable) case, the 2N t matrix takes the expression
t = |g1〉τ〈g1|, and the (anti)symmetrized AGS equation
can be reinterpreted as an effective two-body multichannel
integral equation in one intercluster momentum variable,

X11 = Z11 + Z11τX11, (5)

with the driving term calculated as follows:

Z11 = 〈g1|G0P |g1〉 + 〈g1|G0V
3N
1 G0|g1〉 . (6)

The first contribution represents the standard AGS driv-
ing term, with G0 and P being the free Green’s function
and the cyclic/anticyclic permutator, respectively, while
the second expression takes into account the effects of
the irreducible 3N diagram discussed above. The proce-
dure is consistent with the formalism developed in ref. [12]

Table 1. Ranks used in the separable expansion for each 2N
state and for the various potentials. For the CDB-EST poten-
tial in the 1S0 channel, the expansion has been done separately
for nn and pn cases.

NN states P-EST BB-EST CDB-EST

1S0 5 5 5(+5)
3S1–

3D1 6 6 6
3P0 5 4 4
1P1 5 4 4
3P1 5 4 4
1D2 5 4 4
3D2 5 4 4
3P2–

3F2 5 5 5

to include irreducible pionic effects as corrections in the
Faddeev-AGS equation. Since the formalism is based on
the systematic 4-body approach of ref. [6], it allows to
include additional (high-order) classes of irreducible dia-
grams in subsequent steps.

Neutron-deuteron scattering observables below
20 MeV have been calculated using the finite-rank repre-
sentation of realistic nucleon-nucleon potentials, known
as P-EST, BB-EST, and CDB-EST potentials [34–36].
These provide accurate representation of the nucleon-
nucleon transition matrix for the Paris (P) [37], Bonn-B
(BB) [38], and CD-Bonn (CDB) [31] potentials and are
based upon the Ernst-Shakin-Thaler (EST) method [39]
for generating the finite-rank expressions of the transition
matrices and/or potentials. Benchmark calculations [40,
41] for scattering and bound-state regime have demon-
strated that with this method it is possible to solve
accurately the Faddeev-AGS scattering equations, and to
obtain results comparable (with errors of 1% or less) to
those obtained from a direct solution of the 2-dimensional
Faddeev equations (where the original 2N potential is
used as input). The results shown in the next section
have been calculated with the 2N potentials acting in the
j ≤ 2 states, and listed in table 1. For each 2N potential
and state, the table also reports the rank of the separable
expansion used.

Finally, the calculations reported herein have been per-
formed including all 3N states with total angular mo-
menta up to J = 19/2, for both odd and even parities.

3 Results

We first compare the results of our calculations with ex-
perimental data taken with incident neutrons at 3 MeV.
At this energy the process is below the deuteron break-up
threshold. The experimental data shown in fig. 2 are taken
from refs. [42] and [43] for the differential cross-section and
the neutron analyzing power, respectively. The figure com-
pares the calculations obtained with the CD-Bonn, Bonn-
B, and Paris potentials (dashed, dot-dashed, and dotted
lines, respectively) with those obtained when adding con-
sistently the OPE-3NF effect as discussed in the previ-
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Fig. 2. Differential cross-section and analyzing power for nd
scattering at 3 MeV (Lab). Calculations with the EST expan-
sion of the Paris potential (dotted line), Bonn-B (dot-dashed)
and CD-Bonn (dashed). For each 2N potential, the correspond-
ing ranks are given in table 1. The thick solid line contains the
resulting modifications introduced by the OPE-3NF effect, for
all the three potentials. Data (grey squares) from refs. [42]
and [43].

Table 2. Energy dependence of the effective parameter used
to govern the cancellation in eq. (3).

E (MeV) BB-EST CDB-EST

3.0 0.730 0.58
8.5 0.733 0.60
11.3 0.743 0.63
13.3 0.753 0.65
15.3 0.763 0.67
17.3 0.773 0.69
18.3 0.778 0.70

ous section. By adjusting the parameter in eq. (3) (or in
eq. (4) for the Paris potential), we obtain for each consid-
ered potential the required modifications for the proper
reproduction of the analyzing power without spoiling the
description of the differential cross-section. For the Bonn-
B and CD-Bonn potentials the actual values of the pa-
rameter have been reported in table 2. (For the Paris case
the parameter has been set to 0.385.)

For all the three potentials the result of the calcula-
tions including the OPE-3NF effect is contained in the
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Fig. 3. Deuteron analyzing powers T22 (upper panel) and iT11

(lower panel) at 3.3 MeV. The three thin lines are calculations
with 2N potentials only. The corresponding thick lines contain
also the OPE-3NF effects. As in the previous figure, dotted,
dot-dashed, and dashed lines represent, respectively, the results
with Paris, Bonn-B, and CD-Bonn potentials. Data are from
ref. [44].

thick solid line. For the differential cross-section, there is
a very tiny effect or tendency to reduce the differential
cross-section in both the forward and backward direction,
however, such an effect can hardly be perceived in the
figure.

Then, we compare our results with other polarization
observables taken at comparable energies. To do so, we
consider the complete set of deuteron analyzing power
measurements in deuteron-proton scattering at 8 MeV,
ref. [44]. The measurements at this energy (for incident
deuterons) compares to an equivalent energy of 4 MeV
for the case of incident protons. However, we do not in-
clude Coulomb corrections in our calculations. As minimal
Coulomb correction, we consider exclusively the additional
loss of kinetic energy of the proton while approaching the
electric field of the deuteron [45]. This loss amounts to
about � 0.7 MeV and hence we compare the experimental
data of ref. [44] with theoretical results obtained with in-
cident neutrons of 3.3 MeV. We observe that the Coulomb
slow-down effect has been observed experimentally for Ay

and not for the deuteron analyzing powers, since there are
no experimental neutron data here. However, a recent cal-
culation [46] (with and without Coulomb force) suggests
that the same effect holds also for these observables.
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Fig. 4. Same as in fig. 3, but for the T20 and T21 analyzing
powers.

The lower panel of fig. 3 considers the deuteron vector
analyzing power iT11. Again, we observe that the stan-
dard two-nucleon calculations without 3NF effects (thin
lines) underpredict this observable, while the inclusion
of the OPE-3NF effect provides the necessary modifica-
tions (thick lines) suggested by the data. Conventions for
the lines are the same as in the previous figure, namely,
dashed, dot-dashed, and dotted lines, describe calcula-
tions with CD-Bonn, Bonn-B, and Paris potentials, re-
spectively. We observe that the inclusion of the OPE-3NF
effect for the Bonn-B potential provides the largest ef-
fect for iT11, while for the two other potentials the results
with the 3NF effect are rather similar. This is at variance
with respect to the case without 3NF effects, where the
CD-Bonn potential alone provides a substantially higher
iT11 with respect to the Paris and Bonn-B cases. Aside
from the substantial increase of this observable provided
by the OPE-3NF effect, it is difficult to draw any addi-
tional conclusions by comparison with experimental data
because of the presence of the perturbation introduced by
the Coulomb field, which at these energies modifies sen-
sibly the shape of this observable not only in the most
forward direction.

The upper panel of fig. 3 considers the deuteron tensor
analyzing power, T22. Here the modification introduced by
the OPE-3NF are very small and cannot be perceived in
the figure, with the exception of the Bonn-B case, where
a slight reduction of the dip peaked around 100◦ can be
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Fig. 5. Same as in fig. 2 but for nd scattering at 8.5 MeV.
Data are from refs. [42,47], and [48]. Calculations are for CD-
Bonn (dashed line) and Bonn-B (dash-dotted line) potentials.
The thick solid line includes the irreducible 3NF -like effects
for both potentials.

observed. A similar situation is suggested for the other
two deuteron tensor analyzing powers, T20 and T21, shown
respectively in the upper and lower panel of fig. 4. The in-
troduction of the OPE-3NF effect introduces very slight
modifications also in these two observables. Again we ob-
serve that with the inclusion of this 3NF effect the Paris
and CD-Bonn results become more similar than they were
before. Also with the Bonn-B potential the modifications
are small, although one can clearly perceive for T20 that
the dip at 100◦ and the peak in the backward direction
are slightly more pronounced. Same situation occurs for
the dip at 80◦ for T21. Comparison with data shows that
at these energies and for these observables no definite
conclusions can be drawn without an accurate inclusion
of the Coulomb field, or without a comparison with ac-
curate measurements involving neutron-deuteron scatter-
ing. The figure also suggests that with proper inclusion
of Coulomb modifications in the theory and/or accurate
neutron-deuteron measurements one could actually ob-
serve the phenomenological effects due to this 3NF -like
contribution.

We have repeated the same analysis at 8.5 MeV. Fig-
ure 5 exhibits that basically the same description found
at 3 MeV holds also at this energy. The 3NF mechanism
under scrutiny is capable to raise the neutron-deuteron Ay

in order to match the experimental data without any sen-
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Fig. 6. Same as in fig. 3, but for nd scattering at 8.3 MeV.
Data are for pd scattering at 9 MeV, from ref. [49]. Thick (thin)
lines are calculations with (without) inclusion of the irreducible
pionic effects, as discussed in this work. The calculations are for
the CD-Bonn (dashed lines) and Bonn-B (dot-dashed lines).

sible modification of the corresponding differential cross-
section. As a minor effect, also at this energy we can ob-
serve a reduction of the cross-section in the forward and
backward directions, for both Bonn-B and CD-Bonn po-
tentials, but in both cases the effect is hardly perceptible
in the figure. The cross-section data have been extracted
from ref. [47] (open circles) and ref. [42] (open triangles)
while the polarization data have been taken from ref. [48].

In figs. 6 and 7 we have compared nd theoretical results
with pd data for the deuteron analyzing powers. For the
reasons explained above, we compared results obtained at
8.3 MeV (for incident-neutron energy) with data taken at
18 MeV (incident deuterons) [49]. The lower panel of fig. 6
shows that when including the 3NF effect the increase of
iT11 is about of the right size for both potentials; however,
one observes also an inversion of the peaks, since, when
including the 3NF effect, the Bonn-B peak is higher than
the CD-Bonn one, while without 3NF the CD-Bonn peak
is higher. The same thing was occurring also at lower en-
ergy.

For the deuteron tensor analyzing powers, T22 (up-
per panel of fig. 6), T20 and T21 (upper and lower panels
of fig. 7, respectively), we observe that the overall shape
of the angular distributions is better reproduced than at
4 MeV, indicating that the effects of Coulomb distortions
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Fig. 7. Same as in fig. 6, but for the T20 and T21 analyzing
powers.

are less important here (with the exception of the data in
the forward direction), and that the modifications intro-
duced by the 3NF effects are in general of minor impor-
tance with respect to those observed for the vector ana-
lyzing powers. A closer inspection, however, reveals that
while the OPE-3NF effects are very small for T22 for both
CD-Bonn and Bonn-B potentials, the situation is differ-
ent for the other two deuteron tensor observables, where
the effects of this 3NF diagram can indeed be observed
and are about of the same size of the difference between
the two potentials themselves. For T20 in particular, the
3NF effect provides a remarkable improvement of the dip
at 110◦ in the case of the Bonn-B potential, while for the
case of the CD-Bonn potential the situation is basically
unchanged. For T21 again the 3NF effect remarkably im-
proves the description in the Bonn-B case (especially at
the dip around 90◦), while for the case of the CD-Bonn
potential the situation is reversed.

Then, we have considered how the situation evolves at
12 MeV. Again we find that the introduction of these irre-
ducible pionic effects are able to increase significantly Ay

(lower panel of fig. 8) for both potentials without affecting
appreciably the differential cross-section (upper panel of
fig. 8). As the energy increases, it becomes evident that
the introduction of these 3NF -like effects provide a good
description of Ay in both hemispheres. To obtain this, the
corrections have to operate differently in the two direc-
tions, with a substantial increase of the analyzing power
in the backward hemisphere, where the peak evolves, and
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Fig. 8. Same as in fig. 5 but for nucleon scattering at 12.0 MeV.
Data for the differential cross-section are from refs. [42] (tri-
angles, nd), [50] (circles, pd), and [51] (squares, pd). Data for
the neutron analyzing power (Ay) are from refs. [52] (black
circles) and [53] (gray squares). Calculations are for CD-Bonn
(dashed line) and Bonn-B (dash-dotted line) potentials. The
thick solid line includes the irreducible 3NF -like effects for
both potentials.

at the same time with a slight suppression of Ay in the
forward hemisphere, especially for the Bonn-B potential.
Clearly, these irreducible pionic effects have the ability
to achieve both goals. In figs. 9 and 10 we compare pd
data measured at the proton-equivalent energy of 12 MeV
with nd calculations at 11.3 MeV (for consistency with the
Coulomb slow-down assumption). For both potentials, the
3NF -like effects increase iT11 significantly in the back-
ward hemishere and suppress slightly the observable at
forward angles. Comparison with experimental data sug-
gest that these modifications are correct in both direc-
tions, although great caution has to be exercised when
comparing nd calculation with pd data. Around the peak
at backward angles we observe also a quite large increase
for the case of the Bonn-B potential, while the effect is
smaller for the CD-Bonn case. This last feature is similar
to what has been observed at lower energy.

The 3NF -like effects have a very minor impact on T22,
also at 12 MeV (upper panel of fig. 9), while it is evi-
dent that this observable is more sensitive to the choice
of the underlying 2N potential, and in absence of other
additional contributions, we might conclude that the data
seem to favor more the BB-EST calculation, with respect
to the CDB-EST results.
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Fig. 9. Same as in fig. 6, but for nd scattering at 11.3 MeV.
Data are for pd scattering at 12 MeV, from ref. [54]. Thick
(thin) lines are calculations with (without) inclusion of the
irreducible pionic effects, as discussed in this work. The calcu-
lations are for the CD-Bonn (dashed lines) and Bonn-B (dot-
dashed lines).

In fig. 10 we consider the remaining two tensor ana-
lyzing powers, T20 (upper panel) and T21 (lower panel).
T20 exhibits an interesting evolution since the results for
the BB-EST + OPE-3NF case are significantly different
around 110◦ than the other cases, and they are remark-
ably close to the experimental data. An interesting situ-
ation occurs also for T21 around 100◦, where the Bonn-B
+ OPE-3NF calculation are appreciably more negative
than the other calculations considered in the figure. We
calculated that this same situation evolves also at higher
energies (e.g., 18–20 MeV). Unfortunately, no experimen-
tal data have been found for T21 in this energy range, and
new measurements for T21 would be very useful in the
range of 10–20 MeV.

As has been explained in ref. [18], one basic aspect
of the irreducible pionic effects which generate the 3NF
diagram included in our calculation develops as a con-
sequence of an “imperfect” cancellation with respect to
the mesonic retardation contributions. Since in our study
we employ realistic nucleon-nucleon potentials, we observe
that they are heavily based on fitting procedures of exper-
imental nucleon-nucleon data and are therefore a sort of
“black boxes” with respect to the variety and structure of
the meson exchange diagrams included, except probably
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Fig. 10. Same as in fig. 9, but for the T20 and T21 analyzing
powers.

the OPE term, since only the longest range of the nu-
clear force is well established. It should therefore not be a
surprise that for each 2N potential we included in the cor-
responding 3NF diagram a phenomenological parameter
that governs the level of cancellation against meson retar-
dation effects. In the approach we developed in ref. [19]
we used the experimental value of Ay at the peak to ac-
tually fix this parameter. Then, it is obviously of interest
to study how this parameter evolves with energy. For this
reason we considered the wealth of pd experimental data
for Ay measured at 12, 14, 16, and 18 MeV (ref. [50]) and
compared these data with nd calculations at 11.3, 13.3,
15.3, and 17.3 MeV, respectively, finding that we could
reproduce how the peak evolves with a perfectly linear
dependence of the parameter governing the cancellation
of the 3NF .

The situation is shown in figs. 11 and 12 for the Bonn-
B and CD-Bonn potentials. In the two figures, the up-
per panel compares data with results taken without 3NF ,
while the results in the lower panel include the 3NF ef-
fect. Inclusion of the OPE-3NF effect provides very good
results for the Bonn-B potential, not only in the region of
the peak (around 130◦ MeV), but also in the region around
100◦ where the dip evolves. For the CD-Bonn potential the
situation is similarly satisfactorily for the evolution of the
Ay peak while the evolution of the dip at lower angles is
fair but not optimal. For both potentials, we report in ta-
ble 2 the value of the parameter and the corresponding
energy we have employed in calculating this 3NF effect.
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Fig. 11. Evolution of the analyzing power Ay in the range 12–
18 MeV. Squares, circles, diamonds and triangles represents pd
data at 18, 16, 14 and 12 MeV, respectively, taken from ref. [50].
The lines in the upper panel refer to corresponding calculations
with the Bonn-B potential, while in the lower panel the OPE-
3NF effects are also included.

In this same energy range, we focus attention on the
nucleon-deuteron polarization transfer coefficients, Ky′

y ,
Kx′

z , Kx′x′-y′y′
y , and Kz′z′

y . It has been suggested in
ref. [55] that these observables are sensitive to the ten-
sor part of the nuclear forces and therefore they could in
principle represent a good testing ground for the 3NF -
operator we are studying in the present paper, since this
has a pronounced tensor structure. In addition, experi-
mental data are now available, for both nd and pd systems,
and a number of theoretical studies about these coeffi-
cients have been performed already [51,55–58] with a vari-
ety of different 2N potentials, with the addition of 3NF ’s,
and more recently also with the inclusion of the modifica-
tions introduced by Coulomb effects. From these studies it
emerged that the nucleon-to-nucleon transfer coefficients
Ky′

y and Kx′
z exhibit a scaling behavior with respect to

the triton binding energy, while the nucleon-to-deuteron
coefficients Kx′x′-y′y′

y , and Kz′z′
y do not scale. Moreover,

Ky′
y and Kx′

z exhibit sizable Coulomb effects, while for the
other two coefficients the effects are much less apprecia-
ble. For the case of Ky′

y , where it was possible to compare
directly theory with nd data, it was found that the the-
oretical calculations underpredict the minimum at 110◦,
once the scaling effect with binding, originated by the 2π
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Fig. 12. Same as in fig. 11 but for the CD-Bonn potential.

exchange 3NF , was properly taken into account. More-
over, discrepancies between theoretical calculations and
experimental data concerning the Coulomb effects for Ky′

y

at 19 MeV suggest that the situation is not fully under-
stood. For the nucleon-to-deuteron tensor transfer coeffi-
cients the situation is also unclear, since Coulomb effects
and traditional 2π exchange 3NF provide too small mod-
ifications for a correct reproduction of data (for Kx′x′-y′y′

y

the peak at 135◦ is underestimated). This state of affairs
demands for more theoretical investigations; at the same
time more extensive experimental studies for these observ-
ables in this energy range could be extremely useful.

In figs. 13 and 14 we show the results obtained with
the Bonn-B and CD-Bonn potentials, respectively, and
compare these with experimental nd data taken at 15, 17,
and 19 MeV, ref. [56]. Our calculations do not include the
effects of the 2π exchange 3NF , and therefore one should
take into account in the discussion the rescaling effect that
tend to push the lines downward (this tendency is however
reduced with the Bonn-types interactions, which provide
smaller 3N underbinding with respect to other 2N inter-
actions). The results for the Bonn-B case suggest that the
3NF effect we have calculated is able to correct the un-
derprediction of the minimum of Ky′

y at 110◦, however the
results with the CD-Bonn potential do not confirm this in-
dication, since the modifications are smaller here and have
the tendency to go in the opposite direction. In figs. 15 and
16 we similarly compare the pd data at 19 MeV [55] with
nd calculations at 18.3 MeV. This comparison has to be
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Fig. 13. Spin transfer coefficient Ky′
y at 15 MeV (upper panel),

17 MeV (middle panel), and 19 MeV (lower panel). Compar-
ison between nd data from ref. [56] and Bonn-B calculations.
Solid (dashed) lines include (exclude) the irreducible 3NF -like
pionic effects.

made with great caution, since Coulomb effects and the
2π-3NF provide appreciable effects, but the two modifi-
cations tend somewhat to cancel out [57]. Nevertheless, it
is interesting to observe that here the minimum of Ky′

y

is appreciably overpredicted in the Bonn-B case (lower
panel of fig. 15) while in the case of the CD-Bonn poten-
tial the irreducible pionic effects do not affect the results
appreciably and therefore they maintain the quality of the
fit (lower panel of fig. 16). Thus, the experimental “mis-
match” between the nd and pd data for Ky′

y at 19 MeV
acquires an interesting twist: the nd data seem to support
the Bonn-B + OPE-3NF calculations, the pd data seem
to support more the CD-Bonn + OPE-3NF results.

Finally, in figs. 17 and 18 the tensor transfer coef-
ficients are compared with experiments [58] at 19 MeV.
Again, we observe appreciable effects introduced by the
OPE-3NF diagram in the case of the Bonn-B interac-
tion, while for the CD-Bonn case the effects appear to
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Fig. 14. Same as in fig. 13 but for the CD-Bonn potential.

be smaller, although they go in the same direction. We
observe that the calculation with Bonn-B + OPE-3NF
(fig. 17) is able to solve the underprediction problem in
Kx′x′-y′y′

y , but at the same time it increases the discrep-
ancies in Kz′z′

y , while in the case of the CD-Bonn + OPE-
3NF the situation remains essentially unchanged (fig. 18).

4 Conclusions

We have studied the low-energy effects in nucleon-
deuteron scattering due to an irreducible pionic effect
leading to a 3NF diagram of pronounced tensor struc-
ture. Overall we find that the effects of this diagram on
the differential cross-section are negligible in the consid-
ered energy range, indicating that the average impact of
this 3NF diagram on 3N dynamics is small. On the other
hand, for the case of the spin observables, the higher sen-
sitivity to the smaller components of the wave function
is able to detect the presence of this contribution. This
is so especially for the case of the vector analyzing pow-
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Fig. 15. Calculations for the nd spin transfer coefficients Kx′
z

(upper panel) and Ky′
y (lower panel), at 18.3 MeV, for the

Bonn-B potential. Data are for the equivalent pd observables at
19.0 MeV, from ref. [55]. Solid (dashed) lines include (exclude)
the irreducible 3NF -like pionic effects.

ers Ay and iT11, which are considered to be a magnify-
ing glass for the triplet P waves of the 2N subsystem.
Independently of the 2N interactions used as input, we
found that this 3NF contribution has the potential to
significantly increase (about a 30% effect) the magnitude
of these two observables, and to solve a discrepancy ob-
served long time ago. This is a consequence of the specific
spin-isospin structure of such 3NF diagram which affects
in a privileged manner the triplet odd states [18,19].

For the remaining spin observables (tensor analyzing
powers and polarization transfer coefficients) the changes
due to this pionic contribution are small, however we
found situations where the diagram produces appreciable
effects. In particular with the use of the Bonn-B potential
there are indications that the corrections produced move
towards the right direction, but the results with the newer
CD-Bonn potential reduce the size of these changes con-
siderably. We found few cases where the calculations are
slightly —but appreciably— different when the 3NF ef-
fect is calculated with Bonn-B or CD-Bonn potentials. It
happens with T21 in the energy range 10–20 MeV, with
Ky′

y in the energy range 15–19 MeV, and with Kx′x′-y′y′
y

and Kz′z′
y around 19 MeV. There are however still too

many uncertainties for arriving at a definite conclusion
about these slight differences. Comparison of the wealth of
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Fig. 16. Same as in fig. 15 but for the CD-Bonn potential.

experimental data for charged particles has been done us-
ing only the Coulomb slow-down hypothesis, while a con-
sistent inclusion of Coulomb effects is in principle required.
Finally, a more complete study requires also the inclusion
of the remaining 3NF diagrams of different topology. In
particular, it is known that the 2π-3NF diagram produces
additional corrections which are needed for removing the
underbinding of the 3N bound state. The influence on the
vector analyzing powers in the considered energy range,
however, appears to be marginal.

This work is supported by the Italian MURST-PRIN Project
“Fisica Teorica del Nucleo e dei Sistemi a Più Corpi”. W.S.
thanks INFN and the University of Padova for hospitality and
acknowledges support from the Natural Science and Engineer-
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Appendix A. Binding energy

With the same model interactions used in the main text,
we have calculated also the triton binding energy. The
results are given in table 3. For each one of the three po-
tentials, the first value in the table reports the 3N binding
energy calculated by a direct solution of the homogeneous
Faddeev equation in two momentum variables (2D), using
the original 2N potential as input, and without resort-
ing to the separable expansion method. Details on the
computational method are explained in ref. [41] and refer-
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Fig. 17. Polarization transfer coefficients Kx′x′-y′y′
y (top) and

Kz′z′
y (bottom) calculated at 18.3 MeV for the Bonn-B poten-

tial. Data are for pd scattering at 19.0 MeV, from [58].
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Fig. 18. Same as in fig. 17 but for the CD-Bonn potential.
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Table 3. Results obtained for the triton binding energy
(MeV). The first three lines correspond to different calcula-
tional methods without the inclusion of the 3NF effect. The
last line includes the effects of the OPE-3NF diagram. The
3NF effect has been calculated with the effective parameter c
determined at 3 MeV.

Paris Bonn-B CD-Bonn

2D − orig −7.385 −8.101 −7.958
2D − EST −7.376 −8.088 −7.947
1D − EST −7.376 −8.088 −7.947
1D + 3NF −7.663 −7.943 −8.077

ences therein. The second value has been calculated also
via a direct solution of the 2D Faddeev equation, but
this time using as input the separable expansion of the
2N potential, with the same ranks as given in table 1.
The third value represents the binding energy obtained
with the same separable representation of the 2N poten-
tial as in the previous line, but using the one-dimensional
algorithm corresponding to the Lovelace-Alt-Grassberger-
Sandhas homogeneous equation [41]. Finally, the last line
includes the irreducible pionic effects, as discussed in this
work, in the 1D calculation for the binding energy.
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